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A general theory of nontenuous cold relativistic helically symmetric steady flows is developed.
Both self-fields and radial effects are included. The fluid and the Maxwell equations are
reduced to a system of equations for three scalar functions: a stream function, a flux function,
and an electrostatic potential. These equations are expanded under the assumption of small
perpendicular momenta and a simplified set of ordinary differential equations is obtained. Two
cases are studied in detail. The first case is of a system externally driven by a magnetic wiggler.
The second is the self-excited system, with no externally applied wiggler. The equilibria
described here are of a practical importance for free-electron lasers which employ high-density

thick beams.

l. INTRODUCTION

In recent years there has been a considerable interest in
helically symmetric relativistic electron flows, mainly for
free-electron laser applications.! Helical steady flows were
first studied by Friedland® using the paraxial approxima-
tion. Later analysis by Diament> and Freund et al.* included
the radial dependence of the external helical magnetic field
but considered a tenuous (i.e., very low-density) beam limit
with no self-fields of the beam in the equilibrium. Our pur-
pose is twofold. First we present a cold fluid description of a
relativistic non-neutral steady flow which is helically sym-
metric. Second, we approximate this general description in
order to obtain a simplified picture of some important classes
of free-electron laser equilibria.

The general theory follows the pattern for steady two-
dimensional flows in fluid dynamics and in magnetofluid
dynamics, cf. Grad® and Weitzner.® We introduce a stream
function, a flux function, and an electrostatic potential to
represent the current, the magnetic field, and the electric
field, respectively. The continuity equation for the density,
the momentum equation for the momentum vector, and the
Mazxwell equations for the electric and the magnetic field
vector are replaced by equations for the three scalar func-
tions. We discuss the type of these equations and what addi-
tional data must be specified to characterize a solution.

In the second part of the paper we present a simplified
picture which approximates some free-electron experiments.
Previous theories have neglected the self-fields of the beam
and solve for the particle trajectories in a given external mag-
netic field. In our approach we assume that the self-fields of
the beam are comparable in magnitude to the external heli-
cal magnetic field, a situation typical of high-density beam
experiments. We also assume that the perpendicular mo-
mentum of the fluid is small relative to the parallel momen-
tum and that their ratio is a small parameter in which we
expand the system of equations. To lowest order we have a
cylindrical beam moving in a uniform magnetic field with
zero perpendicular momentum. The helical effects appear in
a higher order in which both the perpendicular momentum
and the self-fields of the beam are present. In the process of
the expansion of the equations, the system of partial differen-
tial equations in two independent variables reduces to a sys-
tem of ordinary differential equations whose independent
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variable is the radial coordinate. In the tenuous beam limit,
analytic expressions are derived for the momenta, which
agree with previous results applicable for low-density beams
and near the beam axis.

We first examine the case in which an external helical
magnetic field is present. One contribution of this paper is
the inclusion of the self-fields of the beam in the equilibria in
a consistent manner. However, even in the tenuous beam
limit, our results are different from previous ones. Freund et
al.* have developed a special solution in which the beam is a
filament in space and all the particle trajectories are axicen-
tered helices. Although particles which enter the interaction
region on axis may follow such a centered helix, particles
which are initially off axis will probably not do so. The ques-
tion of steady state orbits of a thick beam particle has recent-
ly been addressed by Fajans et al.” in a semiempirical way.
The present study contains a consistent approximate solu-
tion for the flow of a thick beam in which the particle trajec-
tories are not axicentered and the beam in lowest order is a
cylinder and not a filament. Qur steady solution is easily
extended to include the self-fields of the beam, while a fila-
ment-type solution is not likely to exist in the presence of
self-fields.

After studying the steady flow in which an external heli-
cal magnetic field (“‘wiggler”) is present, we turn to investi-
gate steady helical flows in the absence of an external driving
wiggler. Such beams in the thin, tenuous limit were found to
be very unstable at high frequencies and they are the basis of
the wiggler-free, free-electron lasers.® We study in detail
these helical flows when the perpendicular momenta of the
beam caused by the self-fields are comparable to the mo-
menta associated with the helical dependence. In order to
show the existence of such helical solutions we must examine
our system of equations to even higher order than in the case
when wiggler fields are present. In higher order the fields
generated by the helical motion exert forces that balance
each other. This rather involved study demonstrates the pos-
sibility of having self-excited, high-density thick helical
beams.

In both the case of an externally driven system (with the
wiggler) and the case of self-excited system (wiggler-free
system), we have considered a general magnetic multipole.
The dipole-type flow which is commonly used for free-elec-
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tron lasers and the recently suggested quadrupole wiggler
flow® are special cases of our analysis.

In Sec. I we present the general formalism, and in Sec.
III we start the derivation of the formal expansion of the
equations. Next we treat the system driven by an external
wiggler in Sec. IV, and the self-excited wiggler-free system in
Sec. V. We conclude in Sec. VI.

Il. GENERAL FORMALISM

We consider a relativistic but cold-electron gas de-
scribed by reduced momentum ii. The electromagnetic field
in Gaussian units are E and B. The equations that character-
ize the gas are
conservation of mass

Vi = 0O, (1)
conservation of momentum

mi (V)i = en(yE + axB/c); (2)
and Maxwell’s equations

VE= 4zreny, (3a)

VX B = 4reni, (3b)

VXE =0, (3¢)
where

Y =1+ii/c% 4)

It is convenient to work with mostly nondimensional vari-
ables, and to this end we define

E = (mc¥/|e|)E, B= (mc¥/|e|)B,

d=cu, #=[mc®/(4me?®)]n.

We recognize that we are concerned with an electron gas so

that Je| = — e and we introduce the electrostatic potential
such that
E= — Vo, (5)
and our system becomes
Venu =0, (1)
(@-V)u = VP — uxB, 2H
AD = ny, (3a")
VXB = — nu, (3b")

where > = 1 + wen. It is convenient to refer to the nondi-
mensional variables n, u, ®, and B as the number density,
momentum, electrostatic potential, and magnetic field, re-
spectively, although the names are not quite correct.

We limit ourselves to solutions which are helically sym-
metric. Such solutions are the basic elements of free-electron
lasers, and a considerable effort has been given to their
study.>™” A steady flow is said to be helically symmetric, if,
when the system is described in cylindrical coordinates #, 6,
and z and expressed in terms of vectors in the 7, @, and 2
directions, all quantities are functions of r and

=0 —kz (6)

only. The parameter £ is the helical wavenumber and speci-
fies the basic periodicity length in z as 27/k. Helical symme-
try enables us to satisfy (1’) and the condition V-B = 0 ex-
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actly by the introduction of a stream function y(7,¢) and a
flux function ¢ (r,¢) such that

nu= —y,/r (7a)

n(v—krw) =y, (7b)
and

B, = —d,/r, (8a)

B, —krB, =1¢,, (8b)
where

u=uf+ v0 + ws. (9

We employ the common notation for derivatives in which
F . represents the derivative of F with respect to x. Trivial
consequences of (7) and (8) are that nuwVy =0 and
B-V3 = 0, which justify the names, respectively, of a stream
function and a flux function.

From the 7 and 6 — kr2Z components of (3b’) we infer
that

X =B, + krB,, (10)
so that

By = (kry + ¢,)/(1 + k*r) (11a)
and

B, =(y—kry,)/(1 + k7). (11b)

The remaining information in the system (3b’) is a Grad-
Shafranov equation for the flux function ¢

A*Yp= —nw—kry, /(1 +k??) —2ky/(1 + k*r*)?,
(12)

where
A*y=[rd, /(L +kP)] /1 + 9,4/ (13)

At this point (8a), (11), and (12) replace (3b’). Thus, the
Maxwell equation for B is reduced to (12) with the represen-
tations for the fields (8a) and (11).

We now turn to the remaining equation, conservation of
momentum (2'). If we dot u into (2’) we readily find the
relativistic form of the Bernoulli law, in this case conserva-
tion of energy (nu-V)(y — ®) =0, for which the general
solution is

y=®+E(y), (14)

where E(y) is an arbitrary function of the stream function y.
When we take the krf + Z component of (2') we find easily
nwV(krv +w + ¢) = 0, so that

kro+w+ ¢ =F(y), (15)
where F(y) is another arbitrary function of y. In (14) and
(15) we have integrated two of the three components (2').
We shall examine the remaining component shortly, but first

we extract further information from (14) and (15). We may
solve (7b) and (15) for the momenta v and w to find

no= [y, +km(F—¢)]/(1+ k), (16a)
nw= [n(F—y)—kry,]/(1 +k?7). (16b)

One consequence of (16b) is that the Grad—Shafranov equa-
tion reduces to the simpler form

A*Y=n[¢— F(x)1/(1 + k) —2ky/(1 + k%)%
(12%)
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Next, from (7a), (14), (16), and the nondimensional form

of (4) we may solve for n* in terms of y, ¥, ®, E(y), and

F(y) to find

n? = |V PA+ kP [(E+ @) =11 — (F— 9’}
aamn

where
Vx> =13 + x5 (1 + k2P /. (18)
In helical symmetry we may finally rewrite Poisson’s equa-
tion (30') as
(r®,) ,/r+ (Dy,) 1+ k*P)/P=n[D+ E(x()3], )
all

with » given by (17).

Finally we turn to the remaining information in the
equations of conservation of momentum. It is simplest to dot
the vector Vy into (2') and in view of the identity

0= (nuV) (uVy) = u(nuV)Vy + Vy-(nuV)u (19)
we readily find
X (.2 k2r4n2(¢—F)2)
Ly= —
o A+ T Tk
(Y- F)
—n PVyvd + LV T Dy
n’[® + E(x) |- Vy-vo + 1157 XV
nr? ( 2k(://—F))
+[(1+k2r2) o (14 k%7
rx,, 2
X vyl 20
(1+k2r2)2]‘ X! 20
where
LY=XX g + XsXrr — 2 s XrXrs: 2n

Thus, the steady flow is characterized by the electrostat-
ic potential ®, the (magnetic) flux function ¢, and the
stream function y. These functions satisfy the three second
order differential equations (3a”), (12'), and (20), which
contain two arbitrary functions E(y) and F(y), where n is
given by (17). The electromagnetic fields are given in terms
of the generalized potentials by (5), (8a), and (11), while
the particle momenta are given by (7a) and (16), with n
given by (17).

Of the three differential equations (3a”), (12'), and
(20), clearly (3a”) and (12') are elliptic, so that consistent
with physical intuition would expect to provide boundary
data for ® and ¥ on some outer boundary. However (20)
raises more substantial problems. It is an easy calculation to
show that the characteristics of (20), given by the character-
istics of (21), are the curves y(7,¢) = const counted twice.
Thus, this equation is a degenerate hyperbolic equation. Two
distinct situations are possible and they correspond to differ-
ent types of data to be imposed. If one solves (20) in a do-
main in which each characteristic enters the domain at a
boundary point and then leaves the domain at another
boundary point then one would expect to give two pieces of
data on each characteristic, possibly y and dy/dn at one end
of each characteristic, possibly y or dy/dn at both ends of
each characteristic. Such a problem would be typical of su-
personic fluid flow, for instance. This type of problem would
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fall more or less within the conventional view of solution of
differential equations.

In many problems of interest, for instance in beam flow
problems, the flow is expected to be fully contained within
some domain in the (r,¢4) plane and correspondingly the
streamlines y = const are also to be contained in some do-
main. In this case we expect each streamline to close on itself
and it is not at all clear what is correct data for (20). We
require that y be periodic on the streamline; thus we expect y
and the tangential derivative on a streamline to be periodic.
Two “jump” conditions are usually counted as one bound-
ary condition, thus we may expect that on each streamline
we might give only one piece of data. However, this problem
is sufficiently nonstandard, that we cannot be sure that this
counting of boundary conditions is correct. The question of
how to deal with (20) is quite similar to the problem of
existence of nonsymmetric toroidal magnetohydrodynamic
equilibria, where again one has a system with one real char-
acteristic counted twice. Our problem is simpler, as we show
in the next section, since the resonances are isolated, rather
than dense. We are forced to leave these questions unre-
solved, although we comment further in the next section.

lIl. APPROXIMATION OF THE EQUATIONS

The solution of the equations described in the previous
section is dependent on the resolution of many nontrivial
mathematical questions and in any case would require a sub-
stantial numerical effort. For some applications, however, it
is possible to find approximate solutions. These solutions
should also help us select correct numerical algorithms for
the full system. If the density of the beam is low, one may
neglect the self-fields and solve the equation of motion in
given external magnetic fields only. This approach has been
widely used in free-electron lasers studies (cf. the references
cited in the Introduction). Axicentered trajectories, which
are filaments in space, are the basis of some steady flows.*
However the assumption of an axicentered filament without
self-fields is not valid for high-density thick electron beams.

We therefore look for an approximate solution in which
the influence of the self-fields is included and the beam is not
a filament in space but approximately a cylinder. Since the
perpendicular momentum of the particle in free-electron la-
sers is usually much smaller than the parallel momentum,
we choose the mean ratio of the momenta as a small param-
eter in which the equations are expanded.

We are interested in a flow with a moderately low den-
sity, and which is approximately a particle beam with flow
momentum in the z direction, but which is a function of .
We also assume that the density is low enough that the mag-
netic field is only mildly perturbed from a constant field in
the z direction. To represent this situation we construct a
formal perturbation expansion of the system (3a"), (12'),
and (20) in a small parameter €. This parameter is a measure
of the ratio of the perpendicular particle momentum to the
momentum parallel to the z axis, the magnitude of the num-
ber density, and the magnitude of the helical effects. We
expand all the dependent variables in formal power series in
this parameter in the form
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grd) = 3 €8, (rd).
n=0

Since in lowest order we want a constant magnetic field
in the z direction, we take in lowest order

X =Xo (22a)
¥ =t (r) = — kr’yo, (22b)
¢ = $,=0. (22¢)

It is trivial to conclude that the system of differential equa-
tions is identically satisfied and

B, = yot, Eo,=0. (23)

We do not yet know u in zeroth order since 7 is first order
and thus nu, given by (7a) and (16), is also first order. We
shall have to carry the expansion at least partially through
second order before we can exhibit any nontrivial helical
dependence in u. We assume a particular form for the un-
known functions E(y) and F(y). Since we may allow E(y)
and F(y) to be explicit functions of € we take

E(y) =E((x —x0)/€.€) =E(x, + €x> + x5+ " ,€),
(24a)

F(x) =F(x, + €y, + €3+ " ,€). (24b)

We now examine the system in first order, and consis-
tent with our hypothesis that the flow should be almost en-
tirely in the z direction and only 7 dependent we assume that
through first order

X =Xo+ €x:(r), (25a)
Y= — W’y + e, (r.9), (25b)
O =eP,(r). (25¢)
We find from (17)
n} = (x,,) /{1 + kP [E3(y () — 1]
— [Foly1 (M) — ¢o(11?} (26)
and thus
A*Yy = my[¢ho — Folx (N))/ (1 + k)
—2ky,/(1 + k)2, (27)
AP, = n,Eoly, (). (28)

If we examine (20), then the left-hand side is O(e*), thus all
lower-order terms on the right-hand side must vanish. In
particular if we select the O(e®) terms we find a constraint
on the various unspecified functions:

Xl,r{Xl,r + n,[Fo(x1) — ¢olkr}
X{nl[)(o"k(Fo(Xl)+¢0)]—X1,y/"}=0- (29)

We see that there are two basic classes of solutions depend-
ing on whether

X1, + 1 (Fo—¥o)kr=0 (30a)
or

ni{yo — k [Fo(x) + ¥ol} — x1,./r=0. (30b)
In the first case we readily find from (26)

Eo(x1)* — 1= [Folx1) — %ol’, (31a)

while in the second case
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(1 + k) [Eo(x1)* — 1] — [Fo(x1) — ¥o]2
= r{xo — k [Folx1) + %ol 1> (31b)

In either case E(y) and F(y) are related by (31). We note
that a consequence of (7a), (16a), (26), and (30) is that for
the first class of flows

uo(r) =ve(r) =0; wi(r) =E} -1,

while for the second class of flows

(32a)

ug(r) =0; wo(r) =rys wi(r)=E}—1—ryi.
(32b)

The two classes of solutions thus correspond to the slow and
fast rotational modes in the limit of zero density.'® Since we
are interested in the first class of flows we assume that
(30a)—(32a) hold. We emphasize that if we had chosen a
more general form than (25) so that y, ¢, and ® all depend-
ed on both r and ¢, then no constraints of the form (31)
would appear. It is only the special form of the assumed
solutions that limits F(y') and G(y) up to the order we have
examined the system. To the order we have solved the sys-
tem y,(r) is arbitrary. Ey(y,) and F,(y,) are related by
(31), and ¢, (r,¢) and ®,(r) are given as solutions of (27)
and (28).

We next turn to the second order calculation. We now
have

U =19o(r) + e, (r,d) + €,(r,9), (33a)
X =Xo+ € () + €x,(rd), (33b)
D = ed,(r) + €D,(r,¢), (33c)
E(Y) =Ey(x)) +€[Es()x2+ E(xp) ], (33d)
F(y) =F,(x) +€[Foxdx: + F(xn ]- (33e)

From (17) we find an expression for n,, which we may sim-
plify by eliminating E § (y,), which we obtain from the de-
rivative with respect to r of (31a), and we obtain

nyk 2P Fo(x 1) — tol?
= Y2l kry . Fo(xy) + (1 +k2"2)X0]
+ krya,. [0 — Folx1) ]
+n{(1+ k) E(x ) [E (x1) + D]
e [Fo(Xl) - 1//0] [FI(X]) —1111]}-
We now find easily that
AD, = nEo(xy) +m [ @+ E5(xx2 + Ei(xy)], (35)
A*y = (n[¢ — Fo(xdx2— Fi(x ) ]
+{”2['I’0'F0(X1)]}}/(1 +k?)

(34)

—2ky,/(1 + k2)?, (36)
X206 T {Xo/[k(¢o_Fo)]}zX2
_ _nmx —F) mri, rxin,
k(o — Fp) k(1 + k%7 14k
nE, (Xo(q’l +E) )
+ —rd,, ) (37)
k(o — Fo) \ k(3o — Fy) b

On examination of systems (27), (28), (35), (36), and
(37) we see that two distinct basic types of solutions are
possible. We may have solutions of (27) [and possibly (28) ]
in which the boundary conditions require that ¥, (r,¢) [and
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possibly @, (7,4)] is nontrivially dependent on ¢, or we may
have solutions in which all first order quantities depend on »
only. In the first case ¢, is a function of » and ¢ but y, is a
function of r only and y, is a function of both » and ¢. We
identify such solutions as externally driven helical wiggler
solutions. In the second case the helical effects appear in all
variables only in second order. We identify this solution as a
self-excited wiggler-free solution. We treat these two solu-
tions separately in the two next sections.

Itis of some interest to decide whether or not ultrarelati-
vistic flows for which |w}> 1 are included in our approxi-
mate treatment. It is not immediately obvious that such
flows are included in an expansion in a small parameter, as a
perturbation expansion assumes that all coefficients are
O(1) and not large. In fact, ultrarelativistic flows are includ-
ed in our expansion. In ultrarelativistic flows y, ¥, ®, E, and
F are all large and of the same order of magnitude. If we
examine the system (12'), (3a”), and (20), with the defini-
tion of 1, (17), then it is easy to see that all terms are of the
same order of magnitude in the ultrarelativistic parameter.
Thus, the expansion in € does not interfere with the ultrarela-
tivistic character of the system. In fact we may easily obtain
such flows merely by assuming that y,> 1.

IV. THE EXTERNALLY DRIVEN SYSTEM

We now assume that either externally applied helically
symmetric currents or that helically symmetric boundary
conditions require that ¢,(7,¢) have nontrivial ¢ depen-
dence. For simplicity we assume that ¥, is a function of »
only, although we could easily include ¢ dependence in @, if
it were appropriate. We may represent the solution of (27)
in the form

U =91 (r)
+ S (ap cos Mp + By, sin Mp)r[ I, (Mkr) ],
M=1

(38)

where I, (z) is the usual Bessel function of imaginary argu-
ment and ¢ (7) satisfies

(/i (0, /A +k°P)],
=n,(Yo— Fo)/ (1 + k) — 2ky /(1 + k)2
(39)
With the use of (30a) to eliminate n, we may integrate (39)
and if we assume, without loss of generality y,(0) = 0, then

x:(r) =kry,. (40)
Equations (40), (8a), and (11) show that
B; = dy./ (kr), (41)

where B is the ¢ independent part of B correct to order €.
Clearly B7 is the self-magnetic fields of a beam with no per-
pendicular momentum. The current to first order is also de-
termined by y, and is

—2nw, =2y, /[kr(1 + k2P)]. 42)
In order to characterize the first order flow we must specify
x:(r) [orequivalently, by (40), #,(7)] and n,(r) [orequiv-
alently, by (30a), Fy(y,) 1. The electrostatic potential is the
solution of (28), where E,(y,) is given by (31a).
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In order to compare our analysis with other treatments
we simplify (38) to

U, =¥ (r) + Ar[I,,(Mkr) ], sin M¢. (43)
Free-electron lasers have been considered usually for M = 1
and recently also for M = 2. We can treat the problem easi-
ly for arbitrary M. We now turn to the evaluation of second
order quantities and we express y,(#,¢) in a form similar to
(43),

X2(r@) = x5 (r) + x5 (r)sin M9,
and from (37) we find

x3(r) = A [ny(r)/k Hyo[rlae (Mr) ],/ k(3o — Fy)]
— M, (Mkr)}/{M? — /[ k(3 — Fp) 1%}

(44)

(45)
and
xoxs: =m[ — xoltho — Fo) (¢ — Fy)
+ Py (Y — F)/(1 + k%)
+ Eqxo(®, + E;) — rEe®, k(¢ — F,)].  (46)

We may consider y; (r) as arbitrary and determining, from
(46), E\(x1) or Fi(x)).

We identify immediately the appearance of a resonance
in (45) whenever the denominator vanishes or whenever
Yo/ [k (¢ — F,)] take on an integer multiple of M. For the
case M = 1 steady-state solutions where yo/[k(1, — F,)]

= — yo/(kW,) is close to one are known to be favorable for
the operation of certain free-electron lasers. In general the
perturbation solution of the original system fails very near a
resonance. Solutions might exist if the profiles are chosen
such that at values of » for which the denominator in (45)
vanishes it is also true that the numerator vanishes. It is
plausible that provided suitable constaints are satisfied that
the original system (12'), (3a"), and (20) has solutions
even if isolated resonances occur. In the next section we ex-
amine a flow that is everywhere resonant; for the remainder
of this section we assume that no resonance occurs in the
domain of interest or that y,/[k (¢, — F;) ] is bounded away
from integer values. Once we have determined y,, we may
find ¢, and ®, from (35) and (36).

We may express the reduced momentum explicitly by
(7a), (16a), and (16b)

U= —€y,,/(rn)) + O(€), (47a)
v=—€e{ — yoro/[nkr(¥y— Fy)] — Eo(E, + ®,)/
[kr(o — Fo)1 + (Fy — #,)/(kr)} + O(€%),  (47b)
w=Fo— b+ (0, AF ¢ + xo/[n: (4o — Fp) 1}
— Eo(E, + )/ (o — Fp)} + O(€2). (47¢)

The reduced momenta are sums of terms which are functions
of 7 alone plus terms which are functions of both r and ¢. The
¢-dependent terms are proportional to the amplitudes of the
applied helically symmetric magnetic field. The terms pure-
ly dependent on » contain the effects of the self-fields of the
beam and correspond to the usual Brillouin flow of a cylin-
drical beam.
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For the remainder of this section we consider the par-
ticularly simple zero density limit of the flow. Although the
formulas (47) for the reduced particle momentum are quite
simple, it is perhaps useful to make contact with other treat-
ments of this problem. From (47c) we see that the leading
order component of the z component of the momentum is
Fy — 1, which we hold fixed as we let n, —0. From (30a) we
see that y, is O(n,), and by (42) we also take ] = O(n,).
Thus, consistent with n, small we take ¢, = O(n,) and
F; = E, = 0. Thus, in the limit as #, »0and with ] = 0and
¥, given by (43) we find

_ _ MA{ Yo I (Mk
S T k(g — Foy L MED]
27 -1
— M2, (MK )) os M [MZ—(——X"——)] :
(M) Joos M9 k(Yo — Fo)
(48a)
2
L (r[IM(MKr)]’,
Y
___Xo g (MKr))sinM
k(o —Fy) 4
21-1
SRS D
k(¥ — Fp)
A {FO,r )( Xo”
- I, (Mkr)],
O e —Fy T TXO Ko — Foy L (MED ],

a2 . 2 _ Xo 2]_1
M, (Mkr))sm M¢[M (k(% — Fo)) .
(48¢c)

Near the axis, we can expand the Bessel function in terms of
the small argument Mkr and find the momentum to lowest
orderin r

(49a)
v, = —u, sin Mg, (49b)
wy = — [,/ M — F) | (xo + Fo,./kr)sin Mg, (49c)
where

_ MAk( — Fo) (MM (k™!
M= \2) [ye+ Mk(h—Fp)]

The perpendicular momentum is large when the resonant
denominator

Yo + Mk (3, — Fy) = By — Mkw, (51)
is small. For the usual wiggler, when M = 1, this reduces to

the well-known cyclotron resonance.? On axis the momen-
tum is

u, =u, cos Mo,

(50)

i

Uy, =1u, cos @, (52a)
v, = — U, singd, (52b)
w, =0, (52¢)
where
U = Ak (Y, — Fp) _ _ Akw, (53)
2[yo + k(o — Fy) ] 2(B,, — kw,)

as in previous one-dimensional studies. Most recently there
was some interest in the use of a quadrupole wiggler.® On the
axis the momentum is zero, and near the axis it is
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uy =u,, cos 24, (54a)
vy = —u,, sin 24, (54b)
w] = 0, (54c)
where
24k(tpy — Fy)kr 24k *wyr
Uy, = = — . (55)
Iyo + 2k(3py — Fy) ] (By — 2kwp)

One can see from (49)—(55) that in the appropriate limit
our formulation includes many standard results. However,
our formulation easily encompasses self-field effects, nonlin-
ear effects, and avoids the paraxial approximation. More-
over, this approximate solution, which describes a helical
perturbation to a cylindrical beam is likely to be closer to
high-density beam experiments than previous descriptions
which assumed axicentered trajectories for all the beam par-
ticles. The nonlinear partial differential equations (12'),
(3a"), and (20) should allow relatively easy numerical com-
putation of complex helically symmetric, cold, relativistic
flows.

V. THE SELF-EXCITED SYSTEM

We next examine the more intricate case when no exter-
nal helically symmetric fields are applied in first order. We
return to the general representations of the approximations
in Sec. II1. We now have all first order quantities y,, ®,, and
¥, as functions of » only. In order that we be able to generate
a solution of the second order equations (35)-(37) which
has nontrivial dependence on ¢ in y,(7,¢) we must require
that the flow be in resonance for all values of 7 or that for
some integer N

Xo =Nk [¢o(r) — Fo(y,(r))], (56)
so that from (30a) and (31a) we find

X1 = r¥on (r)/N (57)
and

EY=1+y3/(N%?). (58)

From (32a) we conclude that w,(r) is independent of » and
wy = y&/(Nk)?. A further consequence of the constancy of
E,is that E(y) = E, + €E (x,) + O(€*) and w, is a func-
tion of 7 only given by

wl(r) =E0(E1(X1) + q)l(r))/wO'

By a possible redefinition of the constant y,, we may assume
¥1(0) = 0, and just as before we may integrate (27) for ¢, to
obtain now, cf. (40),

x:1(r) =krpy,, (59)
while a first integral of (28) for ®, yields
X1(r) = [xo/ (EoN) 17, ,. (60)

On comparing (59) and (60), integrating, and selecting the
irrelevant constants #,(0) and ®,(0) to be zero, we find

Yo®.(r) = KNEgw, (7). (61)
Thus, we may give n,(r) arbitrarily and then y,(») is given
by (57), ¢,(r) by (59), ®,(r) by (61), Fy(y,(r)) by (56),
and the constant E; by (58).

One may notice that Eqs. (57)—(61) describe the rela-
tions among the self-electromagnetic fields of a monoener-
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getic beam with zero perpendicular momenta. In the self-
excited system we are not free to specify both y, and E, (or
equivalently n, and w,). The condition for the existence of a
helical solution requires that E, and w, be r independent and
be determined by y,, N, and k. Thus, we are free to specify
either y,(r) or n,(r) and the other is given by (57). The
lowest-order nonzero electric field E, (r) is related to
B,, (r) by (61) and

Erl (r) = -EOBGI (r)/wO.

We now start an examination of the second order ap-
proximation system (35)—(37). The solution of (37) is

12(r8) = x5 (r) + x4 (r)sin Ng, (62)
where ’
Xa (1) =m (N E(E; + D)/ )0
—x/X5 — (b, — F))/(kN)]. (63)

The profile y% (r) is not yet specified, and the major task of
this section is to complete the specification of the helical
components of all second order quantities. In preparation
for this task we note that we may simplify (34) with (56)-
{(62) to obtain

1o /N* = yox$ (r)sin N¢ + ry,,xo/N
— X111/ Yo — Kk PENE, + ®,). (64)

On differentiation of (56) with respect to r, together with
(22b) and (57), we find

Fi() = — kN /ny(r), (65)
so that differentiation of (63) with respect to  yields
XYoo/ = (m/NY[E o+ ¥o(F i + Fix3)/(kN) ]
+x: N/ (rxd) — rmy/ (xoN). (66)

When we express ®,(7,¢) and #,(r,¢) in forms similar to
(62),

D,(r,¢) = D5 (r) + ®¢(r)sin NO, (67)
Yo (rd) = 5 (r) + ¢ (r)sin NO,

we obtain from (35) and (36)

(r®%,),/r — N*(1 + k*P)d4/7

= Eo(Nryd, + N2x3)/(Pxo) (68)
and
[r8, /(1 + k)] ,/r— N2/

= [x8/(1 + k?r)] ./ (kr) + Ny%(kr). (69)

We could also obtain explicit relationg for #; and ®;, but we
do not need them to complete the specification of the helical
components.

J

Equations (68) and (69) are two relations for the three
known quantities 2,2, and ®%. In order to obtain the nec-
essary additional equation we must return to (20) and ex-
pand to one higher order. In fifth order, the equation com-
parable to (37) is

XB.M + N2X3 =f(X1’¢h¢l’X2,¢2’¢2’r)’ (70)

for some given function f(y,,¥,,®,,Y2¥,,P,,7). In general
(70) will have a solution which is periodic in ¢ only if there
are no terms on the right-hand side proportional to cos N¢
or sin N¢. In the usual terminology we must eliminate the
secular terms in (70). The condition that the coefficient of
sin N¢ vanish, which is the requirement that there be no
secular terms, yields the final relation. Then, y;(7,¢) is de-
termined up to the addition of an arbitrary linear combina-
tion a(r)cos N¢ + b(r)sin N¢. The unknown functions
a(r) and b(r) will be determined in sixth order to eliminate
secular terms. Thus, it is clear that this procedure can pro-
ceed order by order.

We now return to (20) and we expand to fifth order; in
the process we drop all third order potentials, which are
given by the left-hand side of (70), and we drop any terms
which are clearly not proportional to sin Né. Rather than
use the symbol =, we manipulate the equation with the
symbol =, to denote equality modulo terms containing third
order potentials, or terms not proportional to cos N¢ or
sin N¢, or terms of higher order than €. We may simplify
(20) considerably if we note, for instance that

(X.6)" =€ (¥)*(1 + cos 2N$)/2 + O(€®),
so that we may effectively drop all such terms in (20), and
(20) becomes
— 21, X5,V x4 sin Ng
= —rr’[®+E(y)]y,®,
—ry, [k —F) — y, 1/(1 + k**)?
+ 7y, (0¥~ P, +xx,/(1+k**)]. (71)
It is easy to conclude
—rn*(® + E)y,®,
= —€[3miEN(x1/Xo)X5, + r'm Eqyo®, /N
+2n1E3N *y,x3/x0]sin N (72)
and
— ry, [k — F) — yk, 17/ (1 + k2P)?
=€2n} ¥\ N (13 /x,)sin Ng. (73)
We define the remaining term in (71)

T=nX.r[n(¢_F)¢,r +Xx,r]’ (74)
and after some simplification

T= — ensniyor’/N* + €nyint | — kr* (Y, — F, + kNyo/n ) /N + v,/ (kN ?))
— €k (B2 — Fixsxs — F1x0)/N + €x ok ant + €¥3ni [r/ (kN 1o,
+ E€ryox 11 X2, /N + €Pxs (03 /N2)xs + €n,(xa, + naryo/N) (1 + k2P) (N /r)( ~ XoX$ sin Ng + y,n,E%/xo).

(75)

In order to proceed we need an explicit form for n,. We return to the definition (17) and we find, after some calculations
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(PY6/NHnd= — 2 [2k*NEy(E, + $1) /Yo + N1, (2 + k22 /(2P) + ny/xe + nik PEE ]

—m [ (1 + k*P)Eg®, — yotbs/ (NK)] — [N/ (rxo) 1xs, Ly i/xo + K PEL(E, + 61)].

We must next insert the expression (76) into (75) and then
collect terms in (71). We find the remaining relation needed
to close the system (68) and (69)

ays, + B0}, + vvf + 6@ + {yf =0, (77)
where

a=nryi/[kN*(1 + k%)), (78a)

B= — nyry Ey/N, (78b)

¥ = —nyo (kN), (78¢)

8 = nyoFo, (78d)

E=2 NN+ 1)/ (xor") + [2k*N°Ey(E, + ®))
+n (1 +k*PEY) /(1 + k7FP)]. (78e)

The system of equations is, then, (68), (69), and (77),
together with the definitions (78). In this formulation the
constants y,, &, and X are given, together with the essentially
arbitrary functions n,(r) and E,(y,). The functions xa1(r),
¥, (r), and ®,(r) are given by (57), (59), and (60). The
complete specification of the second order stream function
requires, see (63), the additional arbitrary function F, ( X1)s
or equivalently we may consider y; (r) as an arbitrary func-
tion. We could easily express ¢; (r) and D} (#) in terms of
this data as well. We now return to the basic system (68),
(69), and (77). We could use (77) to eliminate y% (r) from
(68) and (69) and we would have two linear second order
ordinary differential equations for ¥%(r) and ®¢(r). The
second derivatives of these functions appear in both equa-
tions. These two equations are possibly singular at points at
which one cannot solve explicitly for the second derivatives.
It is easy to conclude that the condition for this new reso-
nance and singularity is

YN+ D)/ (xo?) + k2NEy(E, +®,) =0.  (79)

Thus, if we give the profiles n,{7), E,(y,), and constants )(0,'

N, and & we must ensure that (79) holds at no points in the
range of values of » of interest. If (79) holds identically the
system (68), (69), and (77) might be well behaved, but
considerable further analysis would be needed to decide.
Provided (79) fails the system (68), (69), and (77) is a
fourth-order system. When (79) holds identically, the sys-
tem is at most third order, although the order could be lower.

It is of some interest to examine whether fully self-excit-
ed solutions of the system are possible. By a fully self-excited
solution, we mean one in which the helical magnetic and
electrostatic fields tend to zero as » - « . After our reduction
of the system to two second order differential equations [as-
suming (79) never holds] we are left with an eigenvalue
problem in which we look for nontrivial solutions of our
system that are regular at the origin and that vanish at infin-
ity. It is quite plausible that such a system would have non-
trivial solutions for some parameter values, but it is by no
means assured that nontrivial solutions exist. We can show
fairly easily, however, that such solutions exist. We pick
X% () essentially arbitrarily, solve (68) and (69) for ¢ (r)
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(76)

r
and ®2 (r) and then we use (77) to determine the function
E,(y,). Thus, we show for some E,(y,) there are indeed
fully self-excited steady flows. We may rewrite (77) as

2k2N2E (E, + ®,)
= —2¥;\ NN + D) (xo")
—n (1 +kPE2) /(1 + k%)
— (a¥l, + BPL, + vf + 59%)/x4. (77

In order that (77') define E,(y,) acceptably, it is sufficient
that ¥ (r) never vanish. It would also be desirable that for
small 7 the quantities 74, /v$,¥%8/x3,r®2, /x4, and &¢/y?
all be regular. If we cannot satisfy this constraint then we
must take 7, (r) to vanish to some high order near » = 0,
which gives a hollow density profile. For large values of r we
expect a reasonable solution whatever the functions may be,
since we may take n,(r) as vanishing rapidly as r— . We
now look to the solvability of (68) and (69) with the right-
hand sides as given.

The solution of

(r®&")/r— (N*/P + N*%k*)d = S(r), (80)
which is regular at the origin and which vanishes at infinity is

&= I(IN(Nkr)fmS(r')r' dr' K (Nkr')

—Ky (Nkr)f Sy driy (Nkr')), (81)
(V]

for some constant /. It is easy to show that if S(r) ~#¥ for r
small then ® ~#™*2 Thus, turning to (68) we see that if
x3~7" then @4 ~rF also. A similar argument applied to
(69) shows that ¢2 ~ . Hence (77’) is well defined as r—0.
We could easily examine the behavior of (77’) for r large by
similar methods, but we insure that (77°) is well behaved for
r large merely by selecting a profile n,(r) which vanishes
rapidly as r— . Thus, we have exhibited fully self-excited
solutions of (68), (69), and (77) for appropriate n, () and
E\(x)).

We might also consider the low-density limit, exactly as
we did in the last section. We must, however, consider two
possibilities for a low-density limit. From (57), (59), and
(60) we see that for n, (7) small y,, ®,, and ¢/, are all small of
the order of density. Now, if we take E,(y,) also to be of
order of the density, then a reasonable scaling would have
x%¥4, and ®¢ also of order of the density, and then no sim-
plification of the system occurs as in each of the equations
(68), (69), and (77) all the terms are of the same order of
magnitude. Thus, with E,(y,) of order », fully seif-excited
solutions are possible. Alternatively we might take E, (y,) of
order of one in the low-density limit. In this case (77) shows
that ¢4 is of order of the density, so that from (68) and (69)
we see that ¢4 and ®% are vacuum fields. Either magnetic or
electrostatic fields may excite helical flow and we consider
magnetic excitation

¥§ = Arl j (Nkr), (82a)
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¢ =0 (82b)
so that
2k3N3E,E xS

= — nyxsAr[N*Iy(Nkr)/(Nkr) — I (Nkr)].
(83)
In this case external magnetic field wiggler sources are pres-
ent but both the helical fields and the helically perturbed
stream function are of second order. We require smaller ex-
ternally applied wiggler fields than for the flows in Sec. IV.
The expression (83) is to be contrasted with (45).

It is often useful to have general explicit expressions for
the reduced momenta. From (7a), (16a), and (16b) we find
u =é€(y?% cos Ng)N /(n,r) + O(€), (84a)
v= —e(x$sin N¢p — y,n/x¥2)N/(n,;r) + O(€?), (84b)
w= — [xo/ (NK)I{1 + €[ (N?k*/x3)Eo(E, + @) ]}

+ O(%). (84c¢)

Note that no helical effects appear in the first order axial
reduced momentum.
Although it is an open question of some interest we can-

not be sure whether exact, nonlinear solutions of our original .

system exist which are of the self-excited type. Clearly the
perturbation expansion described here can be extended to all
orders. It is quite plausible that the nonlinear equation (20)
possesses periodic solutions provided appropriate con-
straints on the unknown function F(y) and E(y) are satis-
fied. We must, unfortunately, leave this vital question open.

VI. CONCLUSIONS

We have presented a general cold fluid theory of helical
relativistic non-neutral steady state flow which includes self-
fields and radial dependence effects. The theory was applied
to externally driven systems (wiggler fields present) and to
self-excited systems (“wiggler-free” flows). An approxi-
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mate set of equations was derived under the assumption of
small perpendicular momenta. The approximate steady
states are especially suitable for high-density thick beams
where previous models are inadequate. We have considered
a general multipole magnetic field configurations and do not
restrict ourselves necessarily to dipole or quadrupole fields.
The steady state flows described here will be the basis of a
stability analysis of free-electron laser interactions.
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